
Spack-Based Packaging and
Development for HEP

Presented by K. Knoepfel on behalf of Chris Green, Jim Amundson,
Lynn Garren & Patrick Gartung.
CHEP 2018



What are we trying to do, and for whom?

What?
Replace decades-old lab-written package deployment infrastructure
(“UPS” and friends) that no longer meets evolved requirements.
Use common infrastructure and FOSS wherever possible to
minimize maintenance burden and maximize applicability.

For whom?
All experiments, collaborations and projects currently relying on
UPS, including those using the art framework and LArSoft
(ArgoNEUT, DUNE, ICARUS, LArIAT, MicroBooNE, Mu2e, Muon
g-2, NOvA, SBND, artdaq, CosmoSIS).
Anyone else with similar needs (e.g. CMS has expressed interest,
coordinating with HSF packaging group).

2/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



What is Spack?

From Spack’s home page:
Spack is a package manager for supercomputers, Linux, and
macOS. It makes installing scientific software easy. With Spack,
you can build a package with multiple versions, configurations,
platforms, and compilers, and all of these builds can coexist on
the same machine.

Developed at LLNL for supporting HPC software.

3/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP

https://spack.io/


What are we trying to replace?
UPS (UNIX Product Support)

Venerable (1990) Fermilab-grown package management system.
Manage binary packages for productsa.

40+ in-house / experiment products, 130+ third-party products.
Trivially-relocatable, achieved via (DY)LD_LIBRARY_PATH and
environment variable substitution.

Variants for (e.g.) compiler, C++ standard, optimization, MPI . . .
setup of compatible dependencies to ensure a coherent system.
Build-system agnostic, no “build language.”
Ensures exactly one active version / variant of a given product.
Heavily reliant on environment variables.

aProduct: Geant4; package: Geant4 built for RHEL7 / x86-64 with
GCC 7.3.0 / C++17 and Vecgeom.

4/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



What are we trying to replace?

cetbuildtools
CMake-based single-package build system.
Dependencies satisfied via UPS.
Produces UPS tarballs.
Relies on UPS-set environment variables.

MRB (Multi-Repository Build)
Develop and build multiple interdependent cetbuildtools-based
packages simultaneously.

ssibuildshims
Ad hoc build-helper scripting utilities.

5/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



Why switch?
UPS maintenance burden – unique to Fermilab.
Relocation via DYLD_LIBRARY_PATH not an option on SIP-enabled
macOS.
Users have asked for increased flexibility e.g. ability to try out new
versions of packages.
An eye to HPC.

What does Spack bring?
Formalized “build language” and dependency system.
Known and popular in HPC.
Able to manage multiple versions and variants of each package.
Active project, many contributors, receptive to contributions.
>2700 recipes for scientific products and their dependencies
contributed by a diverse scientific user community.

6/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



What did Spack not do out-of-the-box?

a.k.a. “Why is this an R&D project?”

Binary package caching and relocation.
Support package development.
Complex variant propagation (e.g. C++ standard choice).
Complex compiler dependency handling (sometimes we care,
sometimes we don’t).
User-defined recipe templates for similarly built products (e.g.
those using art).

7/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



What’s been done?

Successful build and test of the art suite and dependencies for one
platform / compiler / C++ standard.
Preliminary version of cetmodules: UPS-free replacement for
cetbuildtools.
Preliminary version of SpackDev, replacement for MRB.

Contributions to Spack (so far)
buildcache binary package caching and relocation system.
“Spack chains” feature to allow hierarchical Spack installations.
New and improved recipes for many packages (ongoing).
Other minor improvements: compiler features, PATH-like variable
management, tests (ongoing).

8/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



What’s still to do?

Finish “MVP” (Minimum Viable Product): a system
sufficiently-featured to allow Fermlab experiments to start to play
and get a feel for features and limitations:

One platform / compiler / C++ standard.
One art framework release.
Build in place: no binary distribution.

Remaining:

Some recipes: e.g. Pythia6, improve Geant4.
Verify and enhance SpackDev operation with art suite and
experiments’ packages.
Verify ability to use Python and Perl extensions built in cetmodules
packages (extends() / spack activate vs PYTHONPATH, PERL5LIB).
Configure installation and subsequent location of user configuration,
data files, and binary plugin modules.

9/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



Beyond the MVP

Support multiple concurrently-available compiler / C++ standard
and releases without unnecessary builds:

Products for which only one package is required: executable / C-only,
data-only, pure script (Python, R, etc.) packages1.
Identifier hashes for build configurations change when recipes are
updated, invalidating already-built packages.

Verify full buildcache and relocation functionality including libraries,
pkgconfig, data, configuration file and plugin location.
Define a versatile recipe template for cetmodules packages.
Packages needed by experiments and collaborations, e.g.
CodeSynthesis XSD, SMC and related build tools, GENIE, Pandora,
Vecgeom, etc.
Release and distribution management tools.

1e.g. Geant4 data tables (~5GiB) don’t need opt / debug or Clang / GCC versions.

10/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP



Conclusion

Our requirements are a step or two beyond those Spack was
originally conceived to satisfy.
Definite progress toward the goal, but more work (and pull
requests) will be necessary to achieve a full replacement for the
existing system.
Onward for the next 30 years!

11/11 CHEP 2018 Kyle Knoepfel for Chris Green et al. | Spack-Based Packaging and Development for HEP


